Rbf Neural Networks for Function Approximation in Dynamic Modelling
نویسندگان
چکیده
منابع مشابه
A Dynamic Parameter Tuning Algorithm for Rbf Neural Networks
The objective of this thesis is to present a methodology for fine-tuning the parameters of radial basis function (RBF) neural networks, thus improving their performance. Three main parameters affect the performance of an RBF network. They are the centers and widths of the RBF nodes and the weights associated with each node. A gridded center and orthogonal search algorithm have been used to init...
متن کاملEfficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملComparison between Beta Wavelets Neural Networks , RBF Neural Networks and Polynomial Approximation for 1 D , 2 D Functions Approximation
This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn R from scattered samples (xi; y = f(xi)) i=1....n, where first, w...
متن کاملInvestigation of Neural Networks for Function Approximation
In this work, some ubiquitous neural networks are applied to model the landscape of a known problem function approximation. The performance of the various neural networks is analyzed and validated via some well-known benchmark problems as target functions, such as Sphere, Rastrigin, and Griewank functions. The experimental results show that among the three neural networks tested, Radial Basis F...
متن کاملWhy Deep Neural Networks for Function Approximation?
Recently there has been much interest in understanding why deep neural networks are preferred to shallow networks. We show that, for a large class of piecewise smooth functions, the number of neurons needed by a shallow network to approximate a function is exponentially larger than the corresponding number of neurons needed by a deep network for a given degree of function approximation. First, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Konbin
سال: 2008
ISSN: 2083-4608,1895-8281
DOI: 10.2478/v10040-008-0115-6